SECTION 1525
HIGH-VELOCITY HURRICANE ZONES—UNIFORM PERMIT APPLICATION

High-Velocity Hurricane Zone Uniform Permit Application Form

INSTRUCTION PAGE

COMPLETE THE NECESSARY SECTIONS OF THE UNIFORM ROOFING PERMIT APPLICATION FORM AND ATTACH THE REQUIRED DOCUMENTS AS NOTED BELOW:

<table>
<thead>
<tr>
<th>Roof System</th>
<th>Required Sections of the Permit Application Form</th>
<th>Attachments Required See List Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Slope Application</td>
<td>A,B,C</td>
<td>1,2,3,4,5,6,7</td>
</tr>
<tr>
<td>Prescriptive BUR-RAS 150</td>
<td>A,B,C</td>
<td>4,5,6,7</td>
</tr>
<tr>
<td>Asphatic Shingles</td>
<td>A,B,D</td>
<td>1,2,4,5,6,7</td>
</tr>
<tr>
<td>Concrete or Clay Tile</td>
<td>A,B,D,E</td>
<td>1,2,3,4,5,6,7</td>
</tr>
<tr>
<td>Metal Roofs</td>
<td>A,B,D</td>
<td>1,2,3,4,5,6,7</td>
</tr>
<tr>
<td>Wood Shingles and Shakes</td>
<td>A,B,D</td>
<td>1,2,4,5,6,7</td>
</tr>
<tr>
<td>Other</td>
<td>As Applicable</td>
<td>1,2,3,4,5,6,7</td>
</tr>
</tbody>
</table>

ATTACHMENTS REQUIRED:

1. Fire Directory Listing Page
2. From Product Approval:
 - Front Page
 - Specific System Description
 - Specific System Limitations
 - General Limitations
 - Applicable Detail Drawings
3. Design Calculations per Chapter 16, or if applicable, RAS 127 or RAS 128
4. Other Component of Product Approval
5. Municipal Permit Application
6. Owners Notification for Roofing Considerations (Reroofing Only)
7. Any Required Roof Testing/Calculation Documentation
High-Velocity Hurricane Zone Uniform Permit Application Form

Section A (General Information)

Master Permit No.___ Process No.__________________________

Contractor's Name__

Job Address___

ROOF CATEGORY

☐ Low Slope ☐ Mechanically Fastened Tile ☐ Mortar/Adhesive Set Tiles
☐ Asphalitic Shingles ☐ Metal Panel/Shingles ☐ Wood Shingles/Shakes
☐ Prescriptive BUR-RAS 150

ROOF TYPE

☐ New roof ☐ Repair ☐ Maintenance ☐ Reroofing ☐ Recovering

ROOF SYSTEM INFORMATION

Low Slope Roof Area (SF)____ Steep Sloped Roof AREA (SSF)____ Total (SF)____

Section B (Roof Plan)

Sketch Roof Plan: Illustrate all levels and sections, roof drains, scuppers, overflow scuppers and overflow drains. Include dimensions of sections and levels, clearly identify dimensions of elevated pressure zones and location of parapets.
Section C (Low Slope Application)

Fill in specific roof assembly components and identify manufacturer
(If a component is not used, identify as “NA”)

System Manufacturer:

Product Approval No.:

Design Wind Pressures, From RAS 128 or Calculations:

P1: \(\) P2: \(\) P3: \(\)

Max. Design Pressure, from the specific product approval system:

Deck:

Type:

Gauge/Thickness:

Slope:

Anchor/Base Sheet & No. of Ply(s):

Anchor/Base Sheet Fastener/Bonding Material:

Insulation Base Layer:

Base Insulation Size and Thickness:

Base Insulation Fastener/Bonding Material:

Top Insulation Layer:

Top Insulation Size and Thickness:

Top Insulation Fastener/Bonding Material:

Base Sheet(s) & No. of Ply(s):

Base Sheet Fastener/Bonding Material:

Ply Sheet(s) & No. of Ply(s):

Ply Sheet Fastener/Bonding Material:

Top Ply:

Top Ply Fastener/Bonding Material:

Surfacing:

Fastener Spacing for Anchor/Base Sheet Attachment:

Field: \(\) oc @ Lap, # Rows \(\) @ \(\) oc

Perimeter: \(\) oc @ Lap, # Rows \(\) @ \(\) oc

Corner: \(\) oc @ Lap, # Rows \(\) @ \(\) oc

Number of Fasteners Per Insulation Board:

Field \(\) Perimeter \(\) Corner \(\)

Illustrate Components Noted and Details as Applicable:
Woodblocking, Gutter, Edge Termination, Stripping, Flashing, Continuous Cleave, Cant Strip, Base Flashing, Counterflashings, Coping, Etc.

Indicate: Mean Roof Height, Parapet Height, Height of Base Flashing, Component Material, Material Thickness, Fastener Type, Fastener Spacing or Submit Manufacturers Details that Comply with RAS 111 and Chapter 16.
Section E (Tile Calculations)

For Moment based tile systems, choose either Method 1 or 2. Compare the values for \(M_i \) with the values from \(M_r \). If the \(M_i \) values are greater than or equal to the \(M_r \) values, for each area of the roof, then the tile attachment method is acceptable.

Method 1 "Moment Based Tile Calculations Per RAS 127"

\[
\begin{align*}
(P1: & \quad \lambda \quad = \quad \lambda_1 \quad = \quad M: \quad M_{r1} \quad = \quad Product \space Approval \space M_i \quad \) \\
(P2: & \quad \lambda \quad = \quad \lambda_2 \quad = \quad M: \quad M_{r2} \quad = \quad Product \space Approval \space M_i \quad) \\
(P3: & \quad \lambda \quad = \quad \lambda_3 \quad = \quad M: \quad M_{r3} \quad = \quad Product \space Approval \space M_i \quad) \\
\end{align*}
\]

Method 2 "Simplified Tile Calculations Per Table Below"

Required Moment of Resistance (\(M_r \)) From Table Below ________ Product Approval \(M_i \) ________

<table>
<thead>
<tr>
<th>(M_i), required Moment Resistance*</th>
<th>15'</th>
<th>20'</th>
<th>25'</th>
<th>30'</th>
<th>40'</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:12</td>
<td>34.4</td>
<td>36.5</td>
<td>38.2</td>
<td>39.7</td>
<td>42.2</td>
</tr>
<tr>
<td>3:12</td>
<td>32.2</td>
<td>34.4</td>
<td>36.0</td>
<td>37.4</td>
<td>39.8</td>
</tr>
<tr>
<td>4:12</td>
<td>30.4</td>
<td>32.2</td>
<td>33.8</td>
<td>35.1</td>
<td>37.3</td>
</tr>
<tr>
<td>5:12</td>
<td>28.4</td>
<td>30.1</td>
<td>31.6</td>
<td>32.8</td>
<td>34.9</td>
</tr>
<tr>
<td>6:12</td>
<td>26.4</td>
<td>28.0</td>
<td>29.4</td>
<td>30.5</td>
<td>32.4</td>
</tr>
<tr>
<td>7:12</td>
<td>24.4</td>
<td>25.9</td>
<td>27.1</td>
<td>28.2</td>
<td>30.0</td>
</tr>
</tbody>
</table>

*Must be used in conjunction with a list of moment based tile systems endorsed by the Broward County Board of Rules and Appeals.

For Uplift based tile systems use Method 3. Compare the values for \(F' \) with the values for \(F_r \). If the \(F' \) values are greater than or equal to the \(F_r \) values, for each area of the roof, then the tile attachment method is acceptable.

Method 3 "Uplift Based Tile Calculations Per RAS 127"

\[
\begin{align*}
(P1: & \quad x \quad L \quad = \quad x \quad w: \quad = \quad \lambda \quad = \quad W: \quad x \quad \cos \quad \theta \quad = \quad F_{1i} \quad = \quad Product \space Approval \space F' \quad) \\
(P2: & \quad x \quad L \quad = \quad x \quad w: \quad = \quad \lambda \quad = \quad W: \quad x \quad \cos \quad \theta \quad = \quad F_{2i} \quad = \quad Product \space Approval \space F' \quad) \\
(P3: & \quad x \quad L \quad = \quad x \quad w: \quad = \quad \lambda \quad = \quad W: \quad x \quad \cos \quad \theta \quad = \quad F_{3i} \quad = \quad Product \space Approval \space F' \quad) \\
\end{align*}
\]

Where to Obtain Information

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Where to find</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Pressure</td>
<td>P1 or P2 or P3</td>
<td>RAS 127 Table 1 or by an engineering analysis prepared by PE based on ASCE 7</td>
</tr>
<tr>
<td>Mean Roof Height</td>
<td>H</td>
<td>Job Site</td>
</tr>
<tr>
<td>Roof Slope</td>
<td>(\Theta)</td>
<td>Job Site</td>
</tr>
<tr>
<td>Aerodynamic Multiplier</td>
<td>(\lambda)</td>
<td>Product Approval</td>
</tr>
<tr>
<td>Restoring Moment due to Gravity</td>
<td>(M_g)</td>
<td>Product Approval</td>
</tr>
<tr>
<td>Attachment Resistance</td>
<td>(M_r)</td>
<td>Product Approval</td>
</tr>
<tr>
<td>Required Moment Resistance</td>
<td>(M_i)</td>
<td>Calculated</td>
</tr>
<tr>
<td>Minimum Attachment Resistance</td>
<td>(F')</td>
<td>Product Approval</td>
</tr>
<tr>
<td>Required Uplift Resistance</td>
<td>(F_r)</td>
<td>Calculated</td>
</tr>
<tr>
<td>Average Tile Weight</td>
<td>W</td>
<td>Product Approval</td>
</tr>
<tr>
<td>Tile Dimensions</td>
<td>L = length, W = width</td>
<td>Product Approval</td>
</tr>
</tbody>
</table>

All calculations must be submitted to the building official at the time of permit application.
ROOFING APPLICATION STANDARD (RAS) No. 127

PROCEDURE FOR DETERMINING THE MOMENT OF RESISTANCE AND MINIMUM CHARACTERISTIC RESISTANCE LOAD TO INSTALL A TILE SYSTEM ON A BUILDING OF A SPECIFIED ROOF SLOPE AND HEIGHT

1. Scope

This standard covers the procedure for determining the Moment of Resistance \(M_r \) and Minimum Characteristic Resistance Load \(F' \) to install a tile system on buildings of a specified roof slope and height. Compliance with the requirements and procedures herein specified, where the pressures \(P_{\text{med}} \) have been determined based on Table 1 or Table 2 of this standard, as applicable, do not require additional signed and sealed engineering design calculation. All other calculations must be prepared, signed and sealed by a professional engineer or registered architect. Table 1 is applicable to a wind speed of 175 mph, risk category II buildings, and exposure category C. Table 2 is applicable to a wind speed of 175 mph, risk category II buildings, and exposure category D.

2. How to determine the Moment Resistance \((M_r) \) (Moment Based Systems)

2.1 Determine the minimum design wind pressures for the field, perimeter and corner areas \((P_{\text{med1}}, P_{\text{med2}} \) and \(P_{\text{med3}} \), respectively) using the values given in Table 1 or Table 2, as applicable, or those obtained by engineering analysis prepared, signed and sealed by a professional engineer or registered architect based on ASCE 7.

2.2 Locate the aerodynamic multiplier \((\lambda) \) in tile Product Approval.

2.3 Determine the restoring moment due to gravity \((M_g) \) per Product Approval.

2.4 Determine the attachment resistance \((M_a) \) per Product Approval.

2.5 Determine the Moment of Resistance \((M_r) \) per following formula:

\[M_r = (P_{\text{med}} \times \lambda) - M_g \]

2.6 Compare the values for \(M_r \) with the values for \(M_a \) noted in the Product Approval. If the \(M_r \) values are greater than or equal to the \(M_a \) values, for each area of the roof \[\text{i.e., field } P_{\text{med}}(1), \text{ perimeter } P_{\text{med}}(2) \text{ and corner } P_{\text{med}}(3) \text{ areas} \], then the tile attachment method is acceptable.

3. How to determine the Minimum Characteristic Resistance Load \((F') \) (Uplift Based System)

3.1 Determine the minimum design pressures for the field, perimeter and corner areas \((P_{\text{med1}}, P_{\text{med2}} \) and \(P_{\text{med3}} \), respectively) using the values given in Table 1 or Table 2, as applicable, or those obtained by engineering analysis prepared, signed and sealed by a professional engineer or registered architect based on the criteria set forth in ASCE 7.

3.2 Determine the angle \((\theta) \) of roof slope, from Table 1 or Table 2, as applicable.

3.3 Determine the length \((l) \), width \((w) \) and average tile weight \((W) \) of tile, per Product Approval.

3.4 Determine the required uplift resistance \((F_r) \) per following formula:

\[F_r = [(P_{\text{med}} \times 1 \times w) - W] \times \cos \theta \]

3.5 Compare the values for \(F_r \) with the values for \(F' \) noted in the Product Approval. If the \(F' \) values are greater than or equal to the \(F_r \) values, for each area of roof \[\text{i.e., field } P_{\text{med}}(1) \text{ perimeter } P_{\text{med}}(2) \text{ and corner } P_{\text{med}}(3) \text{ areas} \], then the tile attachment method is acceptable.
TABLE 1 — RISK CATEGORY II EXPOSURE CATEGORY “C”1
MINIMUM DESIGN WIND UPLIFT PRESSURES IN PSF FOR FIELD \[P_{wud(1)}\], PERIMETER \[P_{wud(2)}\] AND CORNER \[P_{wud(3)}\] AREAS OF ROOFS FOR EXPOSURE C BUILDINGS WITH A ROOF MEAN HEIGHT AS SPECIFIED2

<table>
<thead>
<tr>
<th>ROOF SLOPE</th>
<th>> 2:12 to ≤ 6:12</th>
<th>> 6:12 to ≤12:12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof mean height</td>
<td>[P_{wud(1)}]</td>
<td>[P_{wud(2)}]</td>
</tr>
<tr>
<td>≤ 20’</td>
<td>-39.1</td>
<td>-68.1</td>
</tr>
<tr>
<td>> 20’ to ≤ 25’</td>
<td>-40.9</td>
<td>-71.3</td>
</tr>
<tr>
<td>> 25’ to ≤ 30’</td>
<td>-42.4</td>
<td>-73.9</td>
</tr>
<tr>
<td>> 30’ to ≤ 35’</td>
<td>-43.9</td>
<td>-76.6</td>
</tr>
<tr>
<td>> 35’ to ≤ 40’</td>
<td>-45.1</td>
<td>-78.7</td>
</tr>
</tbody>
</table>

1 Calculated in accordance with ASCE.
2 For Hip Roofs with slope ≤ 5.5:12, \[P_{wud(3)}\] shall be treated as \[P_{wud(2)}\].
3 \[P_{wud} = 0.6P_{ult}\]

TABLE 2 — RISK CATEGORY II EXPOSURE CATEGORY “D”1
MINIMUM DESIGN WIND UPLIFT PRESSURES IN PSF FOR FIELD \[P_{wud(1)}\], PERIMETER \[P_{wud(2)}\] AND CORNER \[P_{wud(3)}\] AREAS OF ROOFS FOR EXPOSURE D BUILDINGS WITH A ROOF MEAN HEIGHT AS SPECIFIED2

<table>
<thead>
<tr>
<th>ROOF SLOPE</th>
<th>> 2:12 to ≤ 6:12</th>
<th>> 6:12 to ≤12:12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof mean height</td>
<td>[P_{wud(1)}]</td>
<td>[P_{wud(2)}]</td>
</tr>
<tr>
<td>≤ 20’</td>
<td>-47.0</td>
<td>-81.9</td>
</tr>
<tr>
<td>> 20’ to ≤ 25’</td>
<td>-48.8</td>
<td>-85.0</td>
</tr>
<tr>
<td>> 25’ to ≤ 30’</td>
<td>-50.3</td>
<td>-87.7</td>
</tr>
<tr>
<td>> 30’ to ≤ 35’</td>
<td>-51.5</td>
<td>-89.9</td>
</tr>
<tr>
<td>> 35’ to ≤ 40’</td>
<td>-52.7</td>
<td>-91.9</td>
</tr>
</tbody>
</table>

1 Calculated in accordance with ASCE 7.
2 For Hip Roofs with slope ≤ 5.5:12, \[P_{wud(3)}\] shall be treated as \[P_{wud(2)}\].
3 \[P_{wud} = 0.6P_{ult}\]
<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Where to find</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Pressure</td>
<td>$P_{asd(1)}$ or $P_{asd(2)}$ or $P_{asd(3)}$</td>
<td>Table 1 or Table 2, as applicable, or by an engineer analysis prepared, signed and sealed by a professional engineer based on ASCE 7</td>
</tr>
<tr>
<td>Mean Roof Height</td>
<td>H</td>
<td>Job Site</td>
</tr>
<tr>
<td>Roof Slope</td>
<td>θ</td>
<td>Job Site</td>
</tr>
<tr>
<td>Aerodynamic Multiplier</td>
<td>λ</td>
<td>Product Approval</td>
</tr>
<tr>
<td>Restoring Moment due to Gravity</td>
<td>M_E</td>
<td>Product Approval</td>
</tr>
<tr>
<td>Attachment Resistance</td>
<td>M_I</td>
<td>Product Approval</td>
</tr>
<tr>
<td>Required Moment Resistance</td>
<td>M_r</td>
<td>Calculated</td>
</tr>
<tr>
<td>Minimum Characteristic Resistance Load</td>
<td>F'</td>
<td>Product Approval</td>
</tr>
<tr>
<td>Required Uplift Resistance</td>
<td>F_U</td>
<td>Calculated</td>
</tr>
<tr>
<td>Average Tile Weight</td>
<td>W</td>
<td>Product Approval</td>
</tr>
<tr>
<td>Tile Dimensions</td>
<td>$l = \text{length}$ $w = \text{width}$</td>
<td>Product Approval</td>
</tr>
</tbody>
</table>

All calculations must be submitted to the building official at the time of permitting.
ROOFING APPLICATION STANDARD (RAS) No. 128
STANDARD PROCEDURE FOR DETERMINING APPLICABLE WIND DESIGN
PRESSURES FOR LOW SLOPE ROOF

1. Scope

1.1 This roofing application standard has been developed to provide a responsive method of complying with the requirements of Chapters 15 & 16 (High-Velocity Hurricane Zones) of the Florida Building Code, Building. Compliance with the requirements and procedures herein specified, where the pressures \(P_{awd} \) have been determined based on Table 1 or 2, of this standard, as applicable, do not require additional signed and sealed engineering design calculations. All other calculations must be prepared, signed and sealed by a professional engineer or registered architect.

2. Definitions

2.1 For definitions of terms used in this application standard, refer to ASTM D1079 and the Florida Building Code, Building.

3. Applicability

3.1 This application standard applies to:
 a. exposure C and D category buildings; and
 b. building heights of less than or equal to 40 feet; and
 c. roof incline (pitch) is not greater than \(\frac{1}{4} \) in.:12 in.
 d. risk category II buildings.

3.2 Using Table 1 or 2 below, as applicable, determine the minimum design pressure for each respective roof area, which corresponds to the applicable roof height range.

3.3 Referencing the selected Roof Assembly Product Approval, check that the listed maximum allowable design pressure for the particular approved system meets or exceeds those listed in Table 1 or Table 2 above, as applicable.

<table>
<thead>
<tr>
<th>Roof mean height (below)</th>
<th>(P_{awd}(1)) (Field)</th>
<th>(P_{awd}(2)) (Perimeter)</th>
<th>(P_{awd}(3)) (Corners)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>-42.8</td>
<td>-71.7</td>
<td>-108.0</td>
</tr>
<tr>
<td>25</td>
<td>-44.8</td>
<td>-75.1</td>
<td>-113.0</td>
</tr>
<tr>
<td>30</td>
<td>-46.4</td>
<td>-77.8</td>
<td>-117.2</td>
</tr>
<tr>
<td>35</td>
<td>-48.1</td>
<td>-80.6</td>
<td>-121.3</td>
</tr>
<tr>
<td>40</td>
<td>-49.4</td>
<td>-82.9</td>
<td>-124.7</td>
</tr>
</tbody>
</table>

\(^1\) Calculated in accordance with ASCE 7.
\(^2\) \(P_{awd} = 0.6P_{awh} \)
<table>
<thead>
<tr>
<th>Roof mean height (below)</th>
<th>$P_{saud}(1)$ (Field)</th>
<th>$P_{saud}(2)$ (Perimeter)</th>
<th>$P_{saud}(3)$ (Corners)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>-51.4</td>
<td>-86.2</td>
<td>-129.7</td>
</tr>
<tr>
<td>25</td>
<td>-53.4</td>
<td>-89.5</td>
<td>-134.7</td>
</tr>
<tr>
<td>30</td>
<td>-55.0</td>
<td>-92.3</td>
<td>-138.9</td>
</tr>
<tr>
<td>35</td>
<td>-56.4</td>
<td>-94.5</td>
<td>-142.3</td>
</tr>
<tr>
<td>40</td>
<td>-57.7</td>
<td>-96.8</td>
<td>-145.6</td>
</tr>
</tbody>
</table>

1 Calculated in accordance with ASCE 7.
2 $P_{saud} = 0.6P_{sl}$
CHAPTER 15, SECTION 1524
HIGH VELOCITY HURRICANE ZONES
REQUIRED OWNERS NOTIFICATION FOR ROOFING CONSIDERATIONS

1524.1 Scope. As it pertains to this section, it is the responsibility of the roofing contractor to provide the owner with the required roofing permit, and to explain to the owner the content of this section. The provisions of Chapter 15 of the Florida Building Code, Building govern the minimum requirements and standards of the industry for roofing system installations. Additionally, the following items should be addressed as part of the agreement between the owner and the contractor. The owner’s initials in the designated space indicates that the item has been explained.

1. Aesthetics-workmanship: The workmanship provisions of Chapter 15 (High-Velocity Hurricane Zone) are for the purpose of providing the roofing system meets the wind resistance and water intrusion performance standards. Aesthetics (appearance) are not a consideration with respect to workmanship provisions. Aesthetic issues such as color or architectural appearance, that are not part of a zoning code should be addressed as part of the agreement between the owner and the contractor.

2. Reinstalling wood decks: When replacing roofing, the existing wood roof deck may have to be reinstalled in accordance with current provisions of Chapter 10 (High-Velocity Hurricane Zones) of the Florida Building Code, Building. (The roof deck is usually concealed prior to Removing the existing roof system.)

3. Common roofs: Common roofs are those which have no visible delineation between neighboring units (i.e., townhouses, condominiums, etc.). In buildings with common roofs, the roofing contractor and/or owner should notify the occupants of adjacent units of roofing work to be performed.

4. Exposed ceilings: Exposed, open beam ceilings are where the underside of the roof decking can be viewed from below. The owner may wish to maintain the architectural appearance; therefore, roofing nail penetrations of the underside of the decking may not be acceptable. The owner provides the option of maintaining this appearance.

5. Ponding water: The current roof system and/or deck of the building may not drain well and may cause water to pond (accumulate) in low-lying areas of the roof. Ponding can be an indication of structural distress and may require the review of a professional structural engineer. Ponding may shorten the life expectancy and performance of the new roofing system. Ponding conditions may not be evident until the original roofing system is removed. Ponding conditions should be corrected.

6. Overflow scuppers (wall outlets): It is required that rainwater flow off so that the roof is not overloaded from a buildup of water. Parapet/edge walls or other roof extensions may block this discharge if overflow scuppers or wall outlets are not provided. It may be necessary to install overflow scuppers in accordance with the requirements of Chapters 16 and 16 herein and the Florida Building Code, Plumbing.

7. Ventilation: Most roof structures should have some ability to vent natural airflow through the interior of the structural assembly (i.e., the building itself). The existing amount of attic ventilation shall not be reduced.

Exception: Attic spaces, designed by a Florida-licensed engineer or registered architect to eliminate the attic venting, venting shall not be required.

Owner’s/Agent’s Signature Date Contractor’s Signature
JOB ADDRESS: _______________________________ PERMIT # ________________

Complete the re-nailing affidavit and provide two copies signed and sealed prior to Final

Re-Nailing Affidavit

I am □ Florida Prof. Engineer, □ Reg. Architect, □ Licensed General Contractor
□ Building Contractor, □ Residential Contractor, □ Roofing Contractor or
□ Person certified in the structural discipline under FS 468. License # ____________

I hereby certify that the existing or supplemental fasteners have satisfied the requirements of
Table 201.1 (8d round head ring shank @ 6" o.c. Max).

I hereby certify that a secondary water barrier has been provided as required by Section 201.2
2.01.2 A secondary water barrier is installed using one of the following methods.

□ All joints in roof sheathing shall be covered with a minimum 4" wide strip of
self-adhering polymer modified bitumen tape applied directly to the sheathing.
(This method is not acceptable on board sheathed roofs)

□ The 30# ASTM D226 or 30# ASTM D2626 tin tagged per the HVHZ Code shall
be covered with an approved self-adhering polymer modified bitumen cap sheet.

□ The 30# ASTM D226 or 30# ASTM D2626 tin tagged per the HVHZ Code shall
be covered with an approved cap sheet applied using an approved hot-mop
application. (Owner-builder may not choose this option)

Certifier Signature ____________________________ Date ________________

Sworn to and subscribed before me this ______ day of ________________ 200_ by

__
Produced as ID

Notary Public, State of Florida